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On Poiseuille ¯ ow of liquid crystals²

by M. CARME CALDERER* and BAGISA MUKHERJEE

Department of Mathematics, The Pennsylvania State University, University Park,
Pennsylvania 16802, U.S.A.

(Received 15 November 1995; in ® nal form 15 June 1996; accepted 15 July 1996 )

We consider Poiseuille ¯ ow of polymeric liquid crystals corresponding to large values of the
velocity gradient. The model employed [Ericksen, 1991] proposes governing equations for
the velocity ® eld, v, the pressure p, the director n, and the order parameter s. The constitutive
functions for the Leslie coe� cients a i derived from the molecular theory of Doi [1981] play
a crucial role in the modelling. In addition to the Ericksen number, E, the present model
exhibits a new non-dimensional parameter I , that represents the contribution of the elastic
free energy of non-gradient type with respect to Frank± Oseen’s elasticity. One of the goals of
the analysis was to examine the role of s in describing singularities as well as in obtaining
regimes which are not predicted by the previous Leslie± Ericksen model. In particular, solutions
are obtained that correspond to domain structures parallel to the ¯ ow. Such domains are
separated by singular lines across which the director experiences jumps of, approximately,
Ô 45 degrees with respect to the ¯ ow direction. A condition on the size of I is required in
order to support such layered structures. The contribution of the energy associated with I

turns out to play the role of an elastic surface energy which is, otherwise, neglected in the
present model.

1. Introduction boundary value problems for Poiseuille ¯ ow and study
solutions with singularities along the ¯ ow direction.In this article we study modelling as well as mathemat-

The present theory assigns to the order parameterical aspects of plane Poiseuille ¯ ows of uniaxiall y nem-
values s×(Õ 1/2 , 1 ), with s=1 corresponding to perfectatic liquid crystals corresponding to high values of the
alignment along the director, s=Õ 1/2 corresponds tovelocity gradient . The model employed is that due to
the molecules being placed on a plane perpendicular toEricksen for liquid crystals with variable degree of
the director and s=0 is de® ned as the isotropic stateorientation [1 ]. The constitutive equations for the Leslie
with randomly oriented molecules. The director is notcoe� cients as derived by Doi and Kuzuu [2] and
de® ned at points where s=0. This introduces someMarrucci [3], play an essential role in the analysis . The
di� culties in the analysis such as the governing equationpresent work addresses some aspects of the non-
for the director becoming singular at the isotropic state.Newtonian ¯ ow behaviou r of rod-like polymeric ¯ uids

One of the goals of the present paper is to highligh tand their relationship with the presence of defects and
the role of the order parameter in the model. From onetexture in the material.
point of view, it enhances the elastic mechanisms of theIn addition to the Ericksen number, E, associated
model as it introduces a higher degree of non-linearitywith the Leslie ± Ericksen equations, an additional non-
in the equations. On the other hand, it allows us to givedimensional quantity, I , plays a fundamental role in
a rather detailed study of singularities. We also pointthe present modelling context. We ® nd that such a
out that the present model yields solutions that do notquantity is associated with the presence in the model of
arise in the Leslie ± Ericksen theory. We also emphasizean elastic energy of non-gradient type, which in turn,
how con® gurations with defects arise naturally in theallows for the presence of internal layers parallel to the
present context.¯ ow direction. The analysis reveals two types of such

Experimental observat ions indicate that uniformlylayers, isotropic as well as those associated with stress
aligned ¯ ows of polymers with ratio a2 /a3 0 might notjumps. The former may correspond to disclinations in
be maintained at high rates of shear and, phenomenathe ¯ ow region whereas the latter ones may be related
analogou s to that of the case with negative ratio maywith spatially rapid changes of stress. We consider
actually occur [4 ± 6]. In general, there is evidence that
shearing at high rates produces disclinations in con® g-
urations with well-de ® ned orientation ( for example, [7 ]* Author for correspondence.

² Supported by NSF Grant no. DMS-9403915 . and [8 ], § 5´1 ).

0267 ± 8292/97 $12 0́0 Ñ 1997 Taylor & Francis Ltd.
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122 M. Carme Calderer and Bagisa Mukherjee

In the present work, we consider regimes that ful ® l gradient is carried out in § 4. No boundary conditions
the alignment condition a2 /a3 0, and show that, in are taken into account within the context of that section.
some appropriately de® ned limit of ( high) shear rate The multiple uniform solutions corresponding to a pre-
gradients, solutions exhibiting disclinations in the ¯ ow scribed value of the shear rate are interpreted in terms
region can be found. Moreover we show that across the of the sign of the ® rst normal stress di� erence. Condition s
singular lines, the director experiences jump discontinuit- referring to the latter are related to those stemming from
ies of approximately Ô 45 degrees to the direction of stability considerations. In particular, we point out that
¯ ow. The analysis also shows that solutions with disclin- uniformly aligned ¯ ows corresponding to negative values
ations occur in the limit of validity of the alignment of the normal stress di� erence are unstable. The solutions
condition. obtained in this section are the building blocks of more

It results from the analysis that the boundary condi- complex ¯ ows described later. Boundary-value problems
tions on n and s are only felt in a narrow layer near the for the governing equations are formulated in § 5.
boundary. This is consistent with the behaviou r of ¯ ows In § 6, we study solutions corresponding to Poiseuille
with large velocity gradients [8A]. ¯ ow geometries for large values of E. Since the equations

In § 2, we introduce the model and establish a list of exhibit a singular dependence on the parameter m E Õ 1,
constitutive properties, in part, by combining results of we seek solutions {s(x, m), w(x, m)}, x×(Õ 1, 1 ), that admit
[1 ], stemming from the continuum mechanics approach, an asymptotic expansion with respect to m. Solutions
with those from molecular theories as described in with a single disclination along the line x =0 are, in fact
[2 ± 4 ]. In particular, we adopt the approximate forms analogou s to those predicted by the Leslie ± Ericksen
of Leslie coe� cients derived by Marrucci to guide our theory. In such case, the present analysis would provide
assumptions. a more detailed description of the ¯ ow con® guration .

The molecular theory for polymeric liquid crystals The construction of solutions with one or more singu-
developed by Doi [9 ] employs as the relevant quantity, larities in the ¯ ow region (in addition to that in x =0 )

the distribution function f 0 (u). This denotes the probabil - is based on the idea of properly connecting, at a given
ity that the axis of an arbitrarily chosen molecule is in point, branches as those of § 4. The connection is
the direction of the vector u. This theory consists of two achieved with an internal layer. If branches with opposite
equations, a kinetic equation for the evolution of f 0 and sign of the order parameter are brought together, then
another one that expresses the stress tensor in terms of the connecting layer approximates a disclination. Even
the orientational distribution function. In [10 ], it is in the case that there is no change of sign of the order
shown that the Leslie ± Ericksen equations follow from parameter the rapid variations of the ® elds n and s

the microscopic model under special assumptions: (a) f 0 across such layers is consistent with the analogou s
is a ® rst order perturbation of equilibrium and (b) the behaviou r of the components of the stress. This, in turn,
¯ ow regime produces alignment. The latter is consistent may be interpreted as an indication of melt-f racture.
with considering weak velocity gradients. Experimental observat ions of such stress jumps are found

The Helmholtz free energy consistent with the current in some of the chemical engineering literature, for
framework is presented in § 2. In particular, we adopt a example, [11, 12 ].
simpli ® ed version of the more general and physically In order to understand how the non-dimensional
realistic one described in the Appendix, where we also parameters allow for such structures, we make the
give a justi ® cation for our simpler choice. The present following observat ions. The mathematical mechanism in
form has been widely used in various analyses involvin g the equations permitting the matching construction of
Ericksen’s model. solutions is associated with the Ericksen number being

In order to render the notion of high gradient or fast large. Existence of solution branches as in § 4 depends
¯ ow rigorous, in § 3, we carry out the non-dimensionaliz- on the ratio E/I , whereas the requirement of I to be
ation of the governing equations and introduce the su� ciently large allows for internal layers.
relevant dimensionless parameter groups of the model. The latter condition can also be found in analogou s
This suggests interpreting such conditions in terms of problems related to existence of phase boundaries in
the large Ericksen number, i.e., E&1. The equations elastic solids, as illustrated in the article by [13 ]. In
governing static solutions of shear ¯ ow regimes in both situations, it accounts for surface energy that it is
plane geometries are derived in § 3. We point out that not explicitly present in the model.
the choice of plane ¯ ow con® guration meets the pur-
pose of showing that the present model is capable of

2. Modelling and constitutive equationspredicting very complex ¯ ow structure and physical
In order to describe ¯ ows of uniaxiall y nematic liquidphenomenology even for the simplest ¯ ow geometries.

The analysis of solutions corresponding to constant crystals employing the model proposed by Ericksen [1],
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123Poiseuille ¯ ow of L Cs

we need to introduce the vector ® elds and

v=(v1 , v2 , v3 ) (1 )
c1 (s)nÇ Ö n=V A qF

qVsB Ö n Õ
qF

qn
Ö n

n =(n1 , n2 , n3). (2 )
+ c1(s)Vn Ö n Õ c2 (s)An Ö n. ( 12 )

They represent the velocity of the ¯ uid and the director,
The constant r>0 denotes the density and ai(s), bi(s)respectively, at a point x×V of the ¯ ow region, at time
and ci (s) are constitutive functions. They correspond tot 0. Moreover, we let the scalar ® eld
the Leslie coe� cients in the Leslie ± Ericksen theory.

s= s(x, t) (3 ) Restrictions on them will be discussed later in the
section. We assume that they are continuous functions

denote the order parameter. We suppose that of s on the interval (Õ 1/2 1 ).
The second law of thermodynamics in the form of the

V v=0 and n n =1, (4 )
Clausius ± Duhem inequali ty implies that the coe� cients
satisfy the following relations, cf [17], chapter 3:hold, for all x×V . The ® rst equation is a consequence

of the incompressibili ty assumption on the material and a4>0, (13 )
the second one expresses the condition of the director
being a unit vector ® eld. Here s and n correspond to the a1+

3

2
a4+a5+a6 Õ b

2
1

b2
>0, (14 )

common eigenvalue and to the distinct eigenvector,
respectively, of the order tensor, Q, for optically uniaxia l
materials. 2a4+a5+a6 Õ

c
2
2

c1
>0, (15 )

We assume that the Helmholtz f ree energy, F , and the
Cauchy stress tensor, s, are of the form b2>0, (16 )

c1=a3 Õ a2>0, (17 )F =F (s, Vn , Vs)=k1 |Vs |2+k2 s
2 |Vn |2+nf (s) (5 )

c2=a6 Õ a5 . (18 )
s=Õ pI Õ Vn

T qF

qVn
Õ VsE

qF

qVs
+sÃ , (6 )

Ericksen’s theory also requires the stress coe� cients
to satisfy

respectively. Here k1 , k2 and n denote positive constants.
a6 Õ a5=a2+a3 , (19 )f (s) denotes the scalar contribution to the free energy.

The expression given in (5 ) is a simpli ® ed version of and
the more general and physically realistic free energy

b1=b3 . (20 )functional given in the Appendix. There we justify the
simpler choice made here. The former corresponds to Parodi’s relation and it is

sÃ denotes the viscous part of the stress tensor which predicted by molecular theory arguments. However sim-
we will assume to be linear on the velocity gradient : ilar justi ® cations do not appear to lead to the second

relation .
sÃ =(b1 sÇ +a1n An)nEn +a2N En

We conclude the ® rst part of this section by listing
+a3n EN +a4A +a5AnEn +a6nEAn, (7 ) additional hypotheses to be placed on the Leslie coe� -

cients. Their motivation lies on the properties of thewith
approximation formulas for such coe� cients as obtained

2A =Vv+(Vv)
T

, 2V =Vv Õ (Vv)
T (8 ) from the molecular theory of lyotropic liquid crystals

developed by Kuzuu and Doi [10]. We outline theirand
derivation in the next subsection and we now complete

N =nÇ Õ Vn. ( 9 ) the list of assumptions as follows:

p(x, t) denotes the pressure. K
c1

c2
(s)K 1, for all s×A Õ

1

2
, 1B , (21 )

The balance laws associated with the dependent
variables v, n and s are given by

lim
s � 0

c1

c2
(s)=0, c1 (0 )=0 = c2(0 ), (22 )

rvÇ =V s, (10 )

b2 (s)sÇ =V A qF

qVsB Õ
qF

qs
Õ b3(s)n An (11 ) lim

s � 1 Õ

c1

c2
(s)=Õ 1, (23 )
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124 M. Carme Calderer and Bagisa Mukherjee

distribution function f 0(u) can be obtained by the minim-
lim

s � Õ D+

c1

c2
(s)=1, (24 ) ization of A , and therefore, the method does not yield

explicit forms of the Leslie coe� cients. The approximation
schemes to minimize A developed by [2± 4], yield

b1 (s)<0, sc2 (s) 0, s×A Õ
1

2
, 1B . (25 )

ai(s)=k(s)A i(s), 1 i 6, where

k(s)=gÃ 0 (1 Õ s
2
)
2
.

(27 )We observe that (21 ) together with (17 )± ( 19 ) is
equivalent to the inequali ty

The quantity gÃ 0 depends on C, gÃ * as well as on the
molecular weight and the length of the rod of the

a2

a3
(s) 0, for all s×A Õ

1

2
, 1B . (26 )

molecular theory model. {A i (s)} denote dimensionless
polynomials.This is in turn consistent with the study of aligning

The type of approximation involved in calculat ing the¯ ow regimes.
orientation distribution function determines the form of
the functions A i (́ ). Although the aforementioned2.1.1. Remarks

approaches yield distinct forms of the functions A i (́ ),( 1 ) Inequality (21 ) should be regarded as a restriction
they all predict the limiting properties ( 22 ) ± ( 24 ) ason the ¯ ow regimes to be analysed. It was studied by

Leslie [14] in the modelling of aligning regimes of the well as inequali ties (25 ). Here we present the simpler
Leslie ± Ericksen equations. In the present work, we relate expressions derived by Marrucci [3 ]:
the degeneracy of such a ratio with the presence of
defects.

(2 ) The limiting conditions (22 )± ( 24 ) express growth
hypotheses on the coe� cients. They account for the
observed angles of alignment of the director with the

a1 /k Õ s
2
,

a2 /k Õ s(1 +2s)/(2 + s),

a3 /k Õ s(1 Õ s)/(2 + s),

a4 /k (1 Õ s)/3,

a5 /k s,

a6 /k 0. H (28 )¯ ow at the corresponding limits.
(3 ) Inequalities (25 ) are related to the mechanism of

the ¯ ow that cause the director to align .

2.1.2. T he L eslie coecients

While (28 ) give a positive ratio a2 /a3 (and therefore,The continuum theory alone does not provide su� -
satisfy inequali ty ( 21 )), for those given by Berry, suchcient information on the viscosity coe� cients. Here we
quotient changes sign at s=1/4 . One can see that a2 /a3explore the joint approaches of Kuzuu and Doi [2] and
becomes degenerate at s=0. This turns out to be a verythat of Ericksen [1] to gain the needed information
relevant property in the modelling of line defects withinon ai .
the present order parameter model. In general, a6 0The derivation of such coe� cients carried out by

Kuzuu and Doi proceeds by comparing the Leslie ± ( the vanishing of a6 is due to simpli ® cations made on
Ericksen equations with the molecular theory that they the derivation of (28 )). Our analysis does hold in the
previously developed for lyotropic liquid crystals [10]. more general case.
Such a derivation is based on the following assumptions: We observe that ( 17 ) and (18 ) combined with ( 28 )

(1 ) The ¯ ows under consideration correspond to give
aligning regimes.

(2 ) The order tensor takes on equilibrium values only.
The aforementioned authors proceed to obtain expres-

c1 (s)=k(s)
3s

2

2 + s
,

c2 (s)=Õ k(s)s. H (29 )
sions of the Leslie coe� cients involvin g the viscosity of
the isotropic state gÃ *, a dimensionless concentration C

However, neither of the approaches previously discus-and order parameters
sed provides information on the coe� cients bi . For this,

S2= P2(u n) , S4= P4 (u n) . we make use of the following results.
Ericksen [1] derives expressions that approximate theP2 , P4 denote Legendre polynomials of second and fourth

coe� cients ai , bi , and ci near s=0. They are obtained asorder, respectively, and ´´´ denotes the average with
consistency conditions between the dissipation function,respect to the distribution function f 0 (u). The function
D, expressed as a quadratic function of sÇ , N and A , i.e.,f 0(u) is the minimizer of the microscopic free energy A

proposed by Onsager. (We note that S2 corresponds to
D =a4A A +(a5+a6)n A

2
n +a1(n An)

2

the order parameter s of the continuum theory.)
They point out that no closed forms of the equilibrium + c1 |N |2+2c2N An+b2sÇ

2+2b1 sÇ n An,
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125Poiseuille ¯ ow of L Cs

and the analogou s function written in terms of A and correspond to a double-well potential with minimum
points s =s1 and s= s3 , respectively, separated by aQÃ , the co-rotational time derivative of Q,

maximum point s= s2 . The nearly isotropic transition
QÃ =QÇ Õ VQ +Q V .

is a special case of the latter and corresponds to
This yields the following approximate relations, f (s1 )# f (s3), with s1=0 and s1 s3 .

Functions f (s) with s2=0 are associated with high2c2= s(2A0+A1s +4A2 s
2+A3s

3+2A4 s
4
)gÃ 0 (30 )

values of the concentration ( for lyotropic liquid crystals)
2b1=(A0+A1s+2A2s

2+A3 s
3+A4 s

4
)gÃ 0 , (31 ) as well as to low temperatures ( for thermotropic ones) .

Such conditions correspond to prevailing nematic con-where A0 , A1 , A2 , A3 and A4 are constants. In order to
® gurations at equilibrium over unstable isotropic ones.determine them, we now identify the second equation in

The growth conditions on f (s) express the fact that(29 ) with (30 ). This gives
highly aligned nematic con® gurations are rarely

A0=Õ 1 =A4 , A1=0 =A3 , A2=1, observed and, likewise, con® guration with s=Õ 1/2 .
and, consequently,

3. Governing equations

In order to make rigorous comparisons between the
b1=Õ

1

2
k(s). (32 )

elastic and viscous mechanisms of liquid crystal ¯ ows,
it is necessary to write the governing equations inWe let
dimensionless form. First of all, we will discuss the main

b(s) Õ b1(s)=Õ b3 (s), (33 ) non-dimensional groups of parameters involved in the
study of ¯ ow problems. We conclude the section withand point out the positivity of b.
the derivation of the governing equations of plane shear
¯ ow regimes.2.1.3. T he scalar energy f (s)

We ® rst introduce the dimensionless form xÅ , tÅ , of theThe presence of such a term in the free energy origin-
independent variable sates with Frank’s idea of representing F as a truncated

Taylor expansion of the gradients of the ® elds, with f (s)

corresponding to the zero order term. (The rotational x =L xÅ , t =
L

V
tÅ . (34 )

invariance of F excludes the dependence of f on n.) The
inclusion of the term f (s) seems to be relevant to the V , L and r denote a characteristic speed, length and
modelling of polymeric behaviou r [9, 15], and, in gen- the density of the system, respectively. We introduce the
eral it has the form of a double-well potential (with the following scaling of the dependent variables:
single-well case as a special one).

In general f (s) and n depend on the temperature or
v(x, t)=V vÅ (xÅ , tÅ ), p =rV

2
pÅ ,

s(x, t)= sÅ (xÅ , tÅ ), n(x, t)=nÅ (xÅ , tÅ ), H (35 )
the concentration. However, we regard such variable s
as parameters and consider, instead, a family of functions

The resulting equations for the new scaled variable s
f (s) parameterized by them. Of course, di� erent shapes have the same form as those in (10 ) ± ( 12 ) after setting
of the graphs of f (s) result from variations of either of the coe� cient of vÇ on the left-hand side of (10 ) equal to
such parameters. one, and replacing the constitutive functions ai , bi , ci , k iLetting the prime notation in the constitutive functions and n, respectively, with aÅ i , bÅ i , cÅ i and nÅ . The latter are
denote derivative with respect to s, i.e., de® ned as follows:

f ¾ (s)=
d f

ds
(s),

we place the following assumptions on f (s):

(1 ) It is a smooth function of s on the interval
(Õ 1/2 , 1 )) .

(2 ) lim s � Õ 1/2,1 f (s)=+2.

(3 ) There exist real numbers s1 , s2 , s3×(Õ 1/2, 1 ),

aÅ i=
1

rV L
ai

bÅ i=
1

rV L
bi

cÅ i=
1

rV L
ci

kÅ i=
1

rV
2
L

2 k i

nÅ =
1

rV
2 n.

Q
N
N
N
N
N
R
N
N
N
N
N
S

(36 )
s3 0, s1 s2 s3 , s1s2=0 and such that f ¾ (si )=0,

f (si) 0, i=1, 2, 3.
These hypotheses hold for a very general class of

functions f (s). In particular, it includes the case of a
single-well potential located at s1=0 = s2= s3 . In the
case that all values si, i =1, 2, 3 are distinct f (s)
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126 M. Carme Calderer and Bagisa Mukherjee

In particular, the previous relations indicate that to simplify the notation, we will drop the superimposed
bar previously introduced.obtain the correct scaling of the special coe� cients ai

and ci given in § 2, one should make the following We now consider the class of steady state ¯ ows in a
domain V = (Õ 1, 1 ) Ö R

2 such thatreplacement in ( 27 ):

gÃ 0 � g0=
1

rV L
gÃ 0 . (37 )

v=(0, 0, v3), p =p(x, y, z),

n1= sin w, n2=0, n3=cos w, (x, y, z)×V . H
(43 )Next, we introduce the non-dimensional groups com-

monly employed to characterize ¯ ow regimes. We let g, We let
n and K denote typical viscosity and elasticity coe� cients

v3= v(x), w=w(x), s= s(x), (44 )(speci ® c choices for them depend on the problem at
hand ). x×(Õ 1, 1 ). We denote derivative with respect to x with

(1 ) Ericksen number: a prime. Substituting (43 ) and (44 ) into the governing
equations (5 ) ± ( 12 ) , the following equations for the new
® elds v, p, w are obtained:E=g

V L

K
. ( 38 )

0=Gp+2k2s
2
w ¾ 2+Aa1 sin3

w cos w(2 ) Reynolds number:

R =
rL V

g
. (39 )

+
1

2 Aa2+a3+a5+a6BB v ¾ sin w cos wH
¾
+2k1{(s ¾ )2} ¾ ,

Moreover the scalar quantity
(45 )

I =L
2 n

K
, (40 ) 0=Õ qp/qy, (46 )

where n is as in (5 ) , plays a signi ® cant role in ¯ ows with 0=Õ
qp

qz
+GA1

2
a4+a1sin2

w cos2
w+

1

2
(a5 Õ a2)sin2

wB v ¾ Heither internal or boundary layers. gÅ , nÅ and KÂ employed
next represent the scaled versions of g, n and K, respect-

+G
1

2
cos2

wv ¾ (a3+a6)H
¾
, (47 )ively. In terms of such quantit ies, ( 38 ) ± ( 40 ) adopt the

following form:

0=Ac2 Õ c1

2
sin2

w Õ
c1+c2

2
cos2

wB v ¾ +2k2(s
2
w ¾ )¾ (48 )E =gÅ /K,

R =1/gÅ , I =nÅ /K . H (41 )
and

E gives a measure of the relative size of the viscous 0=2k1s Õ nf ¾ (s)Õ 2k2sw ¾ 2 Õ b3v ¾ sin w cos w. (49 )
contributions with respect to the elastic ones whereas I

measures the scalar contribution to the free energy with 4. Shear ¯ ow with constant gradient
respect to the gradient one. An interpretation of such In this section we consider plane, homogeneous shear
quantity is given next. Since the current model does not ¯ ow with constant velocity gradient . We let
include a surface energy term, I takes on such a role:

v(x)=x, w =constant, s=constant, p =constant.its contribution becomes relevant whenever the solution
presents an interface. In particular, conditions ensuring Employing equation (33 ) we write (49 ) for the
the stability of boundary layers are formulated in terms previously given ® elds
of the quantity [16 ]

0 =b(s)cos w sin w Õ nf ¾ (s).

T =
E

I
. ( 42 ) We divide the latter equation through by K and recast

it in the form
Since Vv appears in the governing equations multiply - f ¾ (s)=T v(s)sin 2w, (50 )

ing a coe� cient of the form a i , bi or ci , when assuming
whereVv large, we may instead take the corresponding

viscosity coe� cient to be large holding Vv ® xed.
v(s)=

1

2
g Õ 1

b(s),We adopt the convention that, unless otherwise stated,
all quantit ies encountered from now on have been scaled
according to the previous criteria. However, in order to with g and K as in equations (41 ) and (42 ). Likewise,

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
3
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



127Poiseuille ¯ ow of L Cs

we rewrite equation (48 ), The solvabili ty of equation (58 ) can now be summarized
in Proposition 2. For this, we observe that
lims � 0 H(s, T )>0 as a result of (25 ) , (33 ) and (56 ).E G Õ

1

2
(c1+ c2 ) cos2

w+
1

2
(c2 Õ c1 )sin2

wH =0.

(51 ) 4.2. Proposition 2
Let f (s), ai(s), bi(s) be as in Proposition 1 and suchConstant solutions of (50 ) and ( 51 ) give homogeneous

that s1< s2< s3 holds. Suppose that the following growthaligning regimes.
conditions are satis® ed:We now show existence of multiple aligning ¯ ows

corresponding to given parameter values E and I . For
lim

s � {1 Õ , Õ 1/2+}

b(s)h(s)

f ¾ (s)
=0,this, we discuss the solvabili ty of equations (50 ) and

(51 ), in view of the constitutive properties of § 2.
then for a given value of the ratio T such that:

Case 1.4.1. Proposition 1
We assume that the constitutive equations satisfy H(s, T ) | f ¾ (c2 )|, for all s×[c1 , c2 ], (59 )

relations (13 )± ( 20 ) and (21 )± ( 25 ) . Let f (s) be as in § 2.
there are solutions S+i , S Õi , 1 i 3, corresponding(1 ) If E=0, then s=0 solves equations ( 50 ) and (51 ).
to e=+1 and e=Õ 1, respectively, satisfyingMoreover, in such case w is undetermined.
S Õ1 <S+1 <S+2 <S Õ2 <S Õ3 <S+3 , S Õ1 <0.(2 ) Solutions of (50 ) and (51 ) with s 0 satisfy the

Case 2.algebraic equations
f ¾ (c1)>H(s, T )>| f ¾ (c2 )|, for all s×[c1 , c2 ],

f ¾ (s)= eT v(s)A1 Õ
c

2
1

c
2
2

(s)B
1/2

(52 ) (60 )

there exist solutions satisfying S Õ1 <S+1 <S+2 <S+3 .
with Case 3.

e =Ô 1. f ¾ (c1 )<H(s, T ), for all s×[c1 , c2 ], (61 )

Furthermore, for each s×(Õ 1/2 , 1 ) satisfying (52 ) there exist two solutions such that SÕ1 <S+3 and
S Õ1 <0. Moreover,cos 2w=Õ c1(s)/c2 (s). (53 )

Part (1 ) follows as a consequence of the fact that
S Õ1 � Õ

1

2
and S+3 � 1, as T � 2. ( 62 )

f ¾ (0 )=0. We point out that the above proposition is
valid independently of whether f (s) is a single or a In the latter limiting situation,
double-well potential.

In order to study the solvabili ty of equation (52 ), we
w � G

p

2
, 0H , ( 63 )introduce the following notation.

respectively, hold (see ® gure 1 ).
h(s)=A1 Õ

c
2
1

c
2
2

(s)B
1/2

(54 )

4.3. Remarks
H(s, T )=T v(s)h(s). (55 ) ( 1 ) The second limiting statements in (62 ) and (63 )

establish that, in the limit of high shear rate, the molec-We observe that,
ules tend to follow a perfectly aligned con® guration with

lim
s � 0

h(s)=1 and lim
s � 0

h(s)=0 = lim
s � Õ 1/2

h(s), (56 ) the director becoming parallel to the ¯ ow direction.
( 2 ) We point out that condition (59 ) is satis® ed for

hold. In particular, for ai as in (28 ), expression (54 ) T su� ciently small. Likewise, inequali ty (61 ) holds for
becomes large values of such ratio.

( 3 ) In the case that s1=0 = s2= s3 , i.e., f (s)is a single-h(s)=2 (2 + s)Õ 1
[(1 +2s)(1 Õ s)]

1/2
. (57 )

well potential, Proposition 2 guarantees the existence of
Employing the previous notation, we rewrite equation two solutions: S+1 >0 and S Õ1 <0, corresponding to the
(52 ) as upper and lower regions of the graph, e =1 and e =Õ 1,

respectively.f ¾ (s)= eH (s, T ). (58 )
We conclude this section giving an interpretation of

For f (s)non-convex, let c1< c2 denote the critical points the previously obtained solution branches in terms of
of f ¾ (s). Without loss of generality we assume that the sign of the ® rst normal stress di� erence,

sN s33 Õ s11 . This can be summarized as follows [16]:f ¾ (c1)>| f ¾ (c2 )|.
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128 M. Carme Calderer and Bagisa Mukherjee

Figure 1. The graph of f ¾ ( s) ( thick line) together with those of Ô H(s, T ) . The upper part of the diagram shows the two points
of intersection, S+i , i=1, 2, 3, of f ¾ ( s) with H (s, T ) . Likewise, the lower part shows the points SÕi , i=1, 2, 3.

(1 ) If s1=0 then solutions such that s=S+i , 1 i 3, Integration of equation ( 47 ) taking (45 ) into account
givess=S Õ1 satisfy

sN >0. (64 ) qp/qz=K , (68 )

Otherwise, sN<0 holds. v ¾ (x)g(s, w)=K x +K0 (69 )
(2 ) If s2=0 then solutions such that s=S Õ1 , S+3 also

where K and K0 are constant, and
satisfy (64 ) , whereas the remaining solutions satisfy
sN<0.

g(s, w)=
1

2
a4+a1 sin2

w cos2
wFurthermore, it turns out that sN >0 is a necessary

condition for the stability of the previously obtained
¯ ows with respect to time-dependent perturbations. +

1

2
(a5 Õ a2 )sin2

w+
1

2
(a3+a6)cos2

w. (70 )

5. Plane Poiseuille ¯ ow ® elds

5.1. RemarkFrom now on, we will consider boundary-value prob-
Observe that g(c, w) (with Õ 1/2 < c <1 a constant)lems for the dimensionless equations (44 )± ( 49 ) . We

appears in Leslie’s derivation of the equations of shearprescribe boundary conditions for the ¯ ow ® elds as in
¯ ow in the Leslie ± Ericksen model. As in that case, itplane Poiseuille geometry,
follows from the dissipation inequalities (13 )± ( 15 ) thatqp

qz
=1, v(Õ 1)=0 = v(1 ). (65 )

g(s, w)>0, for all s×A Õ
1

2
, 1B , w×[Õ p/2, p/2].

The choice of one as a prescribed gradient of pressure
(71 )is made keeping in mind the non-dimensional character

of the variable s of the problem. It vanishes at the limits s=1 and s=Õ 1/2 which does
In addition to (65 ), we also prescribe boundary condi- not pose a di� culty since such values are never reached

tions for the optic ® elds. Given constants sa , sb×(Õ 1/2 , 1) within the present model. Integration of (69 ) with respect
and wa , wb×[Õ p/2, p/2], we seek solutions satisfying to x gives

s(Õ 1)= sa , s(1 )= sb (66 )
v(x)= P

x

Õ 1
g Õ 1

(s, w)(K x +K0 )dx +C, (72 )
w(Õ 1)=wa , w(1 )=wb . (67 )

Throughout this section, we will assume that with C an arbitrary constant.
We now give families of ¯ ows associated with thes(́ )×(Õ 1/2 , 1 ), w (́ )×[Õ p/2, p/2] are prescribed.
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129Poiseuille ¯ ow of L Cs

boundary conditions (65 ) . The non-slip conditions on
and

the boundary give the following relation :

0 =(g1(s)sin2
w Õ g2(s)cos2

w)v ¾ +m
k2

K0
(s

2
w ¾ )¾ , (78 )P

1

Õ 1
g Õ 1

(s, w)x dx +K0 P
1

Õ 1
g Õ 1

(s, w)dx =0, (73 )

together with ( 45 ), (66 ), ( 67 ) and (75 ). Here,
from which

v ¾ (x)=g Õ 1
(s, w)x Õ g Õ 1

(s, w)G P
1

Õ 1
g Õ 1

(s, w)dxH
Õ 1 g1(s)=

1

2g0
(Õ c1+ c2), g2 (s)=

1

2g0
(c1+ c2 )

and g3(s)= b3

g0
. HÖ G P

1

Õ 1
g Õ 1

(s, w)x dxH , (74 )
(79 )

follows. This reduces to In particular, for ci as in (29 ) we obtain

v ¾ (x)=g Õ 1
(s, w)x, (75 )

in the case that s(́ ) is even and w (́ ) is either even or odd.
g1 (s)=

Õ (1 Õ s
2
)
2

2 + s
(2s

2+ s),

g2(s)=
Õ s(1 Õ s)

2 + s
(1 Õ s

2
)
2

and g3 (s)=Õ
1

2
(1 Õ s

2
)
2
. H (80 )6. Flows with high shear rates: plane Poiseuille

geometry

In this section we consider ¯ ow regimes with large
Ericksen number. This corresponds to con® gurations
with the viscosity e� ects being predominant over the

We observe that g1 , g2 and g3 are independent of g0 .elastic ones. Within the non-dimensional framework
From now on we assume thatthat we present here, this may provide a mathematical

interpretation to the ansatz of a large velocity gradient . 0 <m %1. (81 )
The goal is to construct solutions with one or more

We seek solutions such that, away from the boundaryline defects parallel to the velocity ® eld. The ® rst type
of the ¯ ow region, admit the following asymptoticof solutions that we obtain exhibit a line defect in the
expansions,centre of the region. The second class present one or

more isotropic internal layers away from the centre. The
s(x, m)= �

N

n=0
sn (x)m

n+O(m
N+1

) (82 )order parameter takes the value zero across such layers
while the director experiences a jump discontinuity of
the order Ô 45 degrees. While the ® rst type correspond

w(x, m)= �
N

n=0
wn(x)m

n+O(m
N+1

). (83 )
to those already predicted from the Leslie ± Ericksen
theory [14 ], the second ones seem to be a novelty of

In order to simplify the notation, we letmodelling ¯ ow problems with the inclusion of additional
optic variables. S = s0 and W =w0 , (84 )

We set
denote the leading terms. Later in the section, we will
modify the asymptotic expansions in (82 ) and (83 ) to
account for internal layer contributions.m=

2K0

g0
, with

K0=max{k1 , k2}, H (76 )

6.1. Governing equations for the leading terms
We consider equations ( 77 ) and ( 78 ) after settingand g0 as in ( 37 ). We observe that m is, in fact, (twice)

m=0:the inverse of the Ericksen number given in (41 ).
We consider the boundary value problem (45 ) ± ( 49 )

and (65 ) ± ( 67 ) . After integrat ing equation ( 47 ) as previ- 0 = f ¾ (S(x))Õ
1

2
T |g3 (S(x))|v ¾ (x)sin 2W (x) (85 )

ously described, and dividing the remaining equations
through by g0 , the governing equations become 0 =g1(S(x))v ¾ (x)sin2

W (x)Õ g2 (S(x))v ¾ (x)cos2
W (x).

(86 )
0 =

m

K0
(k1 s Õ k2s(w ¾ )2)Õ T Õ 1

f ¾ (s)Õ g3 (s)v ¾ sin w cos w

Next we discuss the solvabili ty of equations (85 ) and
(86 ), for v ¾ (x) as in (74 ). We make use of relations (22 ).(77 )
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130 M. Carme Calderer and Bagisa Mukherjee

We observe that equation (86 ) is identically satis® ed gence of the previous expansions. Such issues will
be treated in forthcoming work.for

( 2 ) When discussing the solvabili ty of (88 ) special
Sv ¾ (x )=0.

emphasis will be placed on con® gurations with
On the other hand, for points x×(Õ 1, 1 ) such that defects. Equations ( 29 ) suggest that the only mech-
Sv ¾ (x) 0, we have anism for loosing plane alignment in the present

context is by reaching s=0 in some points of
cos 2W (x)=Õ

c1

c2
(S(x)), or, equivalently, (87 a) the domain.

We seek solutions such that
sin 2W (x)=eh(S(x)), e =Ô 1, where S satis® es,

(87 b)
s(́ , m) is even, and

w (́ , m) is either even or odd, H (92 )

0= f ¾ (S(x))Õ
e

2
T |g3 ((S(x)))|v ¾ (x)h(S(x)), (88 ) in which case, expression ( 74 ) reduces to (75 ).

Consequently, we will further restrict the choice of
with h(s) as in (54 ). Equation (85 ) holds identically at boundary conditions so as to satisfy either of the
points x×(Õ 1, 1 ) such that S(x)=0 and v ¾ (x)=0. following,
Equation (87 b) de® nes functions

sa= sb , and wa=Ô wb . (93 )
W =WÃ (S ). (89 )

Substitution of v ¾ (x) as in equation ( 75 ) into ( 88 )
We denote

reduces the latter to the following,
G (s)=g(s, WÃ (s)). (90 )

0 =Õ f ¾ (S(x))+ eT F (S(x))x, (94 )
Taking into account that WÃ ( ´) satis® es

where

sin2
WÃ =

1

2 A1+
c1

c2B and cos2
WÃ =

1

2 A1 Õ
c1

c2B ,
F (s)=

|g3 (s)|

2
G Õ 1

(s)h(s). (95 )

one can rewrite (90 ) as
We observe that

4G (s)=2a4+a1 A1 Õ
c

2
1

c
2
2B +(a5 Õ a2 )A1 +

c1

c2B F (0 )>0.

In particular, for g3 (s)as in (80 ), h(s)as in ( 56 ) and G (s)

as in ( 91 ), we have+(a3+a6)A1 Õ
c1

c2B .

F (s)=
3 (2 + s)

2 (2s+1 )
1/2

(3s+2 )(1 Õ s)
3/2 . (96 )Since the right-hand side of ( 70 ) depends on w through

combinations of sin2
w and cos2

w only, G (s) is well
Moreoverde® ned and independent of the sign chosen in ( 87 b).

In particular, employing the approximation given in
F (s)#

3

10
(3 )

1/2
(1 Õ s)Õ 3/2 and # (6 )1/2

(2s+1 )Õ 1/2(29 ) the previous relation becomes

(97 )
G (s)=g0 (1 Õ s)

2 (2s+1 )

3 (s+2 )
2 (3s+2 )(1 Õ s

2
)
2
. (91 )

hold, for s close to 1 and Õ 1/2, respectively.
In general, for the constitutive properties ofTo study the solvabili ty of the governing system for

Proposition 1, the following limiting properties hold:the leading terms S and W , we ® rst examine the question
of existence of solutions of equations (88 ) and ( 74 ). lim

s � 1 Õ
F (s)=+2, lim

s � Õ 1/2+
F (s)=+2. (98 )

Subsequent substitution of S into ( 87 ) gives then the
angle of alignment. Before proceeding with such a Taking such properties into account, we can now study
scheme, the following observat ions are in place: the solvabili ty of equations (94 ) and (87 ).

(1 ) The solutions expected to follow from such
method, in general, will not satisfy the boundary 6.2. Solutions with a disclination in the symmetry line of

the ¯ ow regionconditions. This requires to supplement the
asymptotic expansions (82 ) and (83 ) with bound- The next proposition shows the construction of two

solutions, (S+(x ), W+(x))and (S Õ (x), W Õ (x)), that presentary layer ones. The goal is to satisfy the boundary
conditions as well as ultimately achieve conver- a line defect at x =0. Although for simplicity we assume
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131Poiseuille ¯ ow of L Cs

f (s) to be a single-well potential, the results also hold if 6.2.2. Remark
For a =1 to hold the additional hypothesis on thethe function f (s) is non-convex.

growth of f ¾ (s) near s=1 has to be made:

6.2.1. Proposition 3 f ¾ (s)=O(F (s)), (103 )
Suppose that a i , bi , ci are as in Proposition 1. Let f (s)

i.e. f ¾ (s) needs to grow faster that F (s) as s approachesbe such that s1= s2= s3=0. Then:
1. The analogou s condition should also hold for(1 ) There exist a >0 such that (94 ) has two continu-
s# Õ 1/2 in the case of the solution S Õ (x).ous solutions S =S+(x)and S =S Õ (x), x×(Õ a, a). They

If a <1, then the ® elds on the intervals (a, 1 ) as wellare both even on (Õ a, a) and monotonic on the
as (Õ 1, Õ a) do not correspond to solutions of the formsubintervals (0, a) and (Õ a, 0 ).
(43 ). In particular, the director may come out of the(2 ) S+(x) 0, S Õ (x) 0 and satisfy S+(0 )=0 =S Õ (0 ).
plane there. We point out that both S+(́ )and S Õ (́ )give(3 ) S+(́ ) and S Õ (́ ) satisfy the boundary conditions
positive values of the ® rst normal stress di� erence. A(66 ) and (93 ) provided sa solves equation (94 ) for
further selection criteria between them should involvex =Õ 1.
minimization of the dissipation function [16].(4 ) The solutions W+( ´) and W Õ ( ´) associated with

S+(́ ) and S Õ (́ ), respectively, are discontinuous at x =0

and satisfy 6.3. Solutions with disclinations away f rom the centre of
the ¯ ow region

W Ô (x)=Õ W Ô (Õ x), x×(Õ a, a), (99 ) For a given 0 <X <1, we investigate whether the
governing equations admit the following type of solu-

0 W+(x)<
p

4
, Õ

p

4
<W Õ (x)<0, x×(0, a), tion: s(x)=S+1 , x×(0, X ), s(x)=S Õ1 , x×[X, 1 ], s(x)=

s(Õ x), x 0, w(x) satis® es equation (58 ), for x×(0, 1 ),
( 100 ) and

w(x)=Õ w(Õ x), for x <0. (104 )lim
x � 0+

W+(x)=
p

4
= lim

x � 0 Õ
W Õ (x), (101 )

Here S Ô1 denote solution branches as in § 4. In particular,
the ® eld s as constructed in (104 ) changes sign at x =X

lim
x � 0 Õ

W+(x)=Õ
p

4
= lim

x � 0+
W Õ (x). (102 )

and, therefore, a defect may be present there.
It is easy to check, however, that ( 104) does not solve

Proof . The existence of a, 1 a>0, with the previously the governing equations. ( In particular, the s13 compon-
established properties follows from the hypothesis ent of the stress tensor corresponding to such construc-
f ¾ (0 )=0 together with the continuity of the constitutive tion is not continuous.) The presence of an internal layer
functions at s =0. Without loss of generality, we around X matching both branches, S+1 and S Õ1 , respect-
construct the solution S+(x), x×(Õ a, a) as follows. ively, becomes necessary for the governing equations to

be satis® ed at x =X. For this, we rewrite the asymptotic(1 ) For x×(0, a), we let S+(x) be the solution of
expansions ( 82 ) and (83 ) accordingly. For a given integer

f ¾ (s)=T F (s)x.
N 0, we seek solutions that for m >0 su� ciently small(2 ) For x×(Õ a, 0 ), we let S+(x) be the solution of
can be expressed as follows:

f ¾ (s)=Õ T F (s)x.

Since f ¾ (s)=T F (s)|x |, for x×(Õ a, a), then S+(x)= s(x, m)= �
N

n=0
sn (x)m

n+ �
N

n=0
ISn (l)m

n+o(m
N

), (105 )
S+(Õ x) 0.

w(x, m)= �
N

n=0
wn(x)m

n+ �
N

n=0
IWn (l)m

n+o(m
N

), (106 )Likewise, we construct S Õ (́ ) as the solution of

f ¾ (s)=Õ T F (s)x, x×(0, a),

f ¾ (s)=T F(s)x, x×(Õ a, 0 ).
l =

1

e
(x Õ X ), with m =e

2
. ( 107 )

The term ISn and IWn , n 0, represent internal layerPart ( 2 ) follows from the property f ¾ (0 )=0 and part
contributions around x =X. We introduce the notation(3 ) is a consequence of the intermediate value theorem

for continuous functions.
IS IS0 , IW IW0 . ( 108 )

Finally , the oddness property (99 ) of W Ô (x),

x×(Õ a, a), follows from the construction in part (1 ) , To derive equations for the leading terms of such expan-
sions, we substitute (105 ) and (106 ) into the governingtogether with (87 ). In deriving ( 101) and (102 ) we also

employ relations (22 ) and the ® rst one of ( 87 ) . equations (77 ) and (78 ) and neglect higher order terms
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132 M. Carme Calderer and Bagisa Mukherjee

in m. This yields follows from the continuity of f ¾ (s) and F (s), for s 0,
together with the growth condition (111 ). The corres-
ponding W (x) is calculated from equations (87 b), taking0=ma1(S +IS )Õ

1

T
f ¾ (S+IS )

( 1 ) e=Õ 1, for x×(Õ 1, Õ X)n(0, X ), and
Õ ma2(S+IS)(W ¾ +IW ¾ )2 ( 2 ) e=+1, for x×(Õ X, 0 )n(X, 1 ).

Õ g3(S+IS )v ¾ (x)sin (W+IW) cos (W+IW), (109 )
Since

0=ma2S
2
(W +IW )

f ¾ (s)=Õ T F (s)|x |, for x×(Õ X, X), and

f ¾ (s)=+T F (s)|x |, for x×(Õ 1, Õ X)n(X, 1 ),
+v ¾ (x)((g1(S+IS )sin2 (W+IW)

Õ g2(S+IS )cos2 (W+IW))
then

+2ma2(S+IS )(S ¾ +IS ¾ )(W ¾ +IW ¾ ) . (110 )
S(x)=S(Õ x), x×(Õ 1, 1 ). (114 )

6.3.1. Solution in the interior of the domain
Moreover,

In order to determine the ® elds away from the layer
x =X and the boundaries x =Ô 1, we let m � 0 in the W (x)=Õ W (Õ x), for x×(Õ 1, 1 ).
previous equations while holding x×(0, 1 ), x X ® xed.

In deriving (114 ), we employ relations (22 ) . We denoteThis gives equations (85 ), ( 86 ) together with (75 ).
With the analogou s solvabili ty arguments leading to
Proposition 3, we can now state the following result.

SÃ Õ (x)=S (x), x×(0, X)

and SÃ +(x)=S(x), x×(X, 1 ), H (115 )

6.3.1.1. Proposition 4
and likewise for WÃ Ô (x).

Suppose that the hypotheses of Proposition 1 hold.
We assume that f (s) satis® es growth conditions at s=

6.3.1.2. RemarksÕ 1/2 , 1, i.e.
( 1 ) The growth conditions (111 ) are analogou s to

those of Proposition 2. As in the former case, they playlim
s � ( Õ 1/2,1)

F (s)

| f ¾ (s)|
=0. (111 )

the role of ensuring the solvabili ty of (91 ) and (92 ) on
the entire interval (Õ 1, 1 ) . Without such conditions, the

Then: solvabili ty can only be guaranteed on an interval (Õ a, a),

1 >a >0. (This is a consequence of the property f ¾ (0 )=(1 ) There exists an even solution S =S(x), x×(Õ 1, 1 )
0 together with a continuity argument.) The type ofthat is discontinuous at x =Ô X. Moreover, it is
structures constructed here would then be restricted tomonotonic on the subintervals (0, X ), (X, 1 ),
the smaller interval with X×(Õ a, a).(Õ 1, Õ X) and (Õ X, 0 ). It satis® es S(0 )=0.

( 2 ) The analogou s construction in the case that f (s)(2 ) W ( ´) is odd, discontinuous at x =Ô X and satis® es
is non-convex allows the coexistence of distinct solution
branches in the region such as S+1 and S+3 of § 4 ( instead
of the matching of S+1 and S Õ1 carried out here). We

0 W (x)<
p

4
, x×(Õ X, 0 )n(X, 1 ) and

Õ
p

4
<W (x)<0, x×(Õ 1, Õ X)n(0, X ). H observe that matching of such branches does not involve

passing through the isotropic state, s=0. This fact is
exploited in forthcoming work in order to model phen-

(112 ) omena such as melt-f racture and stress jumps [11, 12 ].

Moreover,
6.3.2. Internal layer regions

We start introducing the following notation. For alim
x � 0+

W (x)=Õ
p

4
and lim

x � 0 Õ
W (x)=

p

4
. (113 )

given function v(l), l×(Õ 2, 2) di� erentiable, we
denoteProof . We construct S(x) as the solution of equation

(94 ) with the following properties: dv

dl
vÇ .

(1 ) for x×(Õ 1, Õ X)n(0, X) let e =Õ 1 in (94 ) , and
(2 ) for x×(Õ X, 0 )n(X, 1 ), let e =1.

We now set m =0 in equations ( 109) and (110) while
holding l ® xed. This gives the governing system forFor a given X×(0, 1 ), the existence of such a solution
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133Poiseuille ¯ ow of L Cs

{IS(l), I W (l)}, l×(Õ 2, 2): construct a 2M-layered solution following the method
developed in this section. We point out that the method
previously shown does not determine M as well as some0 =a1(ISÈ )Õ A 1

T
f (S)+

1

2
g ¾3 (S)v ¾ (X)sin (2W)B (IS )

of the points X. In fact, for the functions that we
construct to be approximations of solutions of theÕ g3 (S)v ¾ (X)cos 2W (IW)+q1 (IS, IW) , (116 )
boundary value problem (77 ) and (78 ), the data M

and Xi cannot be arbitrarily prescribed but must be0=
1

2
( g1 (S)+g2(S ))v ¾ (X)sin 2W sin 2 (IW)

determined from m.

There are two mechanisms of selection of the layer
+ ( g ¾1 (S)sin2

W Õ g ¾2 (S)cos2
W)v ¾ (X)(IS )

position X that reveal the di� erent nature of such points.
First of all, let us assume that f (́ ) is non-convex and+a2 S

2
(IWÈ )+q2 (IS, IW) , (117 )

0< c1< c2<1 denote the critical points of f ¾ (́ )as in § 4.
where

Let x1>0 denote the point such that s(x1)= c1 . Then
S =SÃ Õ (X), W =WÃ Õ (X ), whenever l<0, (118 ) for T >0 such that c1 T <1, we take X =x1 .

Moreover for such a choice of X, we observe that
S =SÃ +(X), W =WÃ +(X ), whenever l>0. (119 )

another solution construction is availabl e by letting
q1(IS, IW), q2(IS, IW) denote the non-linear terms of the

s(x)=S+3 , x×[X, 1 ),equations. We note that the coe� cients of (IS, IW) in
equations (116 ) and (117 ) are discontinuous at l=0. instead of S Õ1 in ( 104). Out of both such solutions, we

We seek solutions (IS(l), IW (l)), l×(Õ 2, 2)of (116 ) select the one that minimizes the rate of dissipation.
and (117 ) satisfying the following conditions: The second mechanism is associated with the fact that

the ® rst term of the right hand side of (78 ) changes sign
at s=0 and, consequently, the forcing term of the
equation becomes oscillatory. (Moreover, points where
s vanishes are associated with in ® nite values of |w ¾ |.) In
forthcoming work, we develop an algorithm to get

lim
l�

0+
IS(l)=Õ S+(X),

lim
l�

0 Õ
IS(l)=Õ S Õ (X),

lim
l�

0+
IW(l)=

p

4
Õ W+(X ),

lim
l�

0 Õ
IW(l)= Õ

p

4
Õ W Õ (X), H (120 )

numerical approximations to such points. We also pro-
vide a qualitat ive argument based on phase-plane ana-
lysis of a related second order nonlinear di� erential
equation.

7. Conclusionsand
In this article we have illustrated how new mathemat-

lim
l� Ô 2

IS(l)=0, lim
l� Ô 2

IW (l)=0. (121 ) ical mechanisms arise in the equations when the order
parameter is included in the model. The new mechanisms
extend those of the Leslie ± Ericksen theory and help6.3.2.1. Remark

towards the study of local e� ects not modelled by theThe ® rst two limiting conditions in (120 ) establish the
former. In particular, we have shown that the energysingularity of the line x =X and the last two state that
associated with the order parameter introduces a mech-the director jumps from p/4 to Õ p/4 across such line.
anism of surface energy which accounts for the presenceThe limits in (121 ) are the standard ones in the theory
of defects in the form of singular internal layers orof singular perturbations for Ordinary Di� erential
stress jumps.Equations and express the condition that, away

The contribution to the model of the latter mechanismfrom the boundary layer region, the boundary layer
is quanti ® ed by the dimensionless parameter I , thecontribution becomes negligibl e.
interface number, which together with E give aExistence of solutions of the problem (116 ) ± ( 121)
characterization of stationary ¯ ow regimes.follow under the assumptions of Proposition 3 together

The work presented in this paper seems to outlinewith the additional condition
material properties and mathematical methods useful in

I &1. (122 ) describing regimes with large E well beyond the scope
of the model and geometry presented here.The proof is presented in [16].

From the modelling point of view, it reinforces the
idea that tools from Continuum Mechanics combined6.3.3. Multistripe solutions and selection of points X

For a given integer M >0, we consider points Xi , with other physical theories ( for example, molecular
theory) provide a systematic procedure to obtain systems1 i M , such that 0<Xi<1, Xi<Xi+1 . We then
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134 M. Carme Calderer and Bagisa Mukherjee

of governing equations amenable to mathematical ana- Appendix: The Helmholtz free energy

The purpose of this appendix is to provide a justi ® ca-lysis and computing. Whereas the former establishes
tion for the use of the simpler form of the free energyguidelin es on obtaining balance laws and relating
(5 ) instead of the more physically realistic one givenkinematic ® elds with dynamic ones, the latter give
below. First of all, the function shown in (5 ), eveninvaluab le information on material properties.
though it depends on s, it does not exhibit all the terms
of the Oseen ± Frank free energy expression. In addition ,
no coupling between n and s is taken into account in
the simpli ® ed form. Here, as in [1], we propose the
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135Poiseuille ¯ ow of L Cs

with respect to Q. Such comparison gives the following The governing equations in dimensional form become
expressions of the coe� cients,

0 =(2 (n +qs sin2
w)s ¾ )¾ Õ (2as+3 (b + c cos2

w)s
2
)(w ¾ )2

Õ q sin2
w(s ¾ )2 Õ W ¾0(s)Õ b3 sin w cos wv ¾ ,

0 =(as
2+(b+ c cos2

w)s
3
w ¾ )¾ + cs

3 sin w cos w(w ¾ )2

Õ
1

4
(c1+ c2 cos 2w)v ¾ ,

0 =
q(Õ p Õ A +sÃ 11 )

qx
, H

K1

2
=

K3

2
+ cs

3
,

K2

2
=as

2+bs
3=

K3

2
,

K4

2
=ms

2+ cs
3
,

L 1

2
=n,

L 2

2
=qs, L 3=Õ ms=Õ L 4 ,

Q
N
N
N
N
R
N
N
N
N
S

(A 4 )

(A 6)

with

A =2 (as
2+(b + c cos2

w)s
3
)(w ¾ )2+2 (n +qs sin2

w)(s ¾ )2,
(A 7 )

where a, b, c, m, n, q are constants whose choice is
together with equations ( 45 ) and (46 ).restricted by inequali ties (A 2 ). Finally we derive the

After carrying out the non-dimensionalization of thegoverning equations for ® elds v, n and s as given in § 3.
previous system as done in § 3, we observe that theFirst of all, in such case the free energy becomes
results of § 4, 5 and 6 apply directly to them. The new
terms exhibited by the governing system (A 5 )± (A 7 )

2W 2=(K1 cos2
w+K3 sin2

w)(w ¾ )2
become relevant only in analyses concerning low and
intermediate values of E.+(L 1+L 2 sin2

w)(s ¾ )2. (A 5 )
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